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Summary. The concept and generating method of optimum group symmetric 
localized molecular orbitals (OSLMOs) are proposed. The OSLMOs have 
strong points of orthogonality, equivalence and symmetry, and they are simultan- 
eously as close to the classical VB structure as possible. By using the OSLMOs as 
one-electron orbitals the multiconfigurational correlation calculations are reduced. 
The scheme is also a valuable popularization and development to hybridization 
theory. 
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1 Introduction 

The generation of localized orbitals depends on the localization criteria. 
There are various localization criteria [1-3]. The localized orbitals (LOs) are 
obtained by a unitary transformation of canonical molecular orbitals (CMOs) 
and are orthogonal to one another, but these methods are not directly 
related to molecular geometric symmetry and group theory method, and not 
completely in accord with the molecular symmetry and valence bond (VB) orbital 
due to a restriction of the orthogonal condition. We have proposed an 
effective algorithm generating LOs by using the coset theory method [4-6]. 
These LOs are called group symmetric localized molecular orbitals (SLMOs), 
and completely satisfy the molecular symmetry, equivalence as VB, simultaneously 
rigorous orthogonality as CMOs. Each SLMO can only be transformed into 
(up to a phase) another SLMO or itself, and no mixture of orbitals is generated 
under the action of any element of molecular point group G. The space symmetry 
adaptations of multishell electron configurations and calculations of 
Hamiltonian matrix elements are greatly simplified due to the use of SLMOs as 
configuration generating orbitals (CGOs). In this article, we develop a mathemat- 
ical method from which the optimal SLMOs (OSLMOs) can be obtained and 
they can be applied to multiconfiguration self-consistent-field (MCSCF) iteration 
calculations [7, 8]. 
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2 Fully optimized reaction space model, VB orbitals, and 
group symmetric LOs 

The bases of atomic orbitals are classified as inner-shell and valence-shell orbitals. 
The inner-shell orbitals are inactive or frozen in chemical processes, and the 
reaction (variance) space of molecular orbitals is spanned by the full atomic valence 
orbitals in the molecule. According to the fully optimized reaction space (FORS) 
[9] model, the orbital variance space of a molecular system consists of core space, 
active space, and virtual space, wher e the occupied numbers of orbitals are 2 in core 
space, less than 2 in active space, and zero in virtual space. Let the sum of electrons 
in variation space be N, the core electron number be No, the active electron number 
be Na, the sum of orbitals be n, the number of core orbitals be no, the number of 
active orbitals be Na, and the number of virtual orbitals be nv, then: 

g = N e + N a ,  (1) 

n = n~ + na + nv, (2) 

N~=2n~, 0<Na<2na .  (3) 

The core space contains the bonding orbitals between two atoms, the lone-pair 
orbitals in an atom, and three center bonds etc.. From chemical practice, the 
bonding rule, and capabilities of atoms in molecules it is possible to define the 
number of chemical bonds (containing the a bonds, 7t bonds, 8 bonds, or three- 
center bonds), long-pair electron orbitals, as well as the active electron orbitals. For  
molecular systems having point group symmetry the chemical bonds are classified 
according to inequivalent sets. For  example, there are four C - H  bonds in C4H4, 
6 a(C-C) bonds, 6 o-(C-H) bonds, 6 re(C) active orbitals in C6H 6. Each equivalent 
set spans an invariant subspace by operations of the molecular point group G, and 
can be decomposed into one or some irreducible subspaces. Benzene (C6H6) 
belongs to group D6h , where a(C-C) is reduced to the four irrepresentations 
(irreps) Alg , BI,,  Elu, Ezg, o'(C-H) can be decomposed into Alg , B2u , Elu , E2g , 7z(C) 
into A2,,Big, Elg, Ezu I-4]. Therefore, each equivalent bond (or orbital, long- 
pair etc.) space can be characterized by its reductions into irreps. The orbitals in 
virtual space also can be localized in definite regions of occupied molecular 
orbitals. For  instance, the virtual space of C6H6 may be decomposed into a(C-C), 
a(C-H), re(C), and spans some covariance spaces corresponding to these CGOs 
subspaces, respectively. Each covariance subspace in virtual space has the same 
symmetry and is localized in the same region with the corresponding occupied 
subspace in G. 

The SLMOs are in one-one correspondence with the VB orbital, but the 
SLMOs are orthogonal, and the VB orbitals usually are nonorthogonal. The basic 
assumption of generating OSLMOs is that the SLMOs are as close to the real 
chemical bonds as possible, and simultaneously retain the orthogonal and sym- 
metric condition. 

3 The relationship between group symmetric LOs and CMOs 

Let V denote the variance space, V (t) denote subspace, t = c, a, or v denote core, 
active, or virtual space, respectively. Let k be smaller subspace spanned by a set of 
equivalent orbitals. If t = c, then v(t,k) denotes bonding orbital space (o-, re, ~ bond) 
or long-pair space; if t = a, then v (t,k) denotes active orbital space; and if t = v, then 
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v(t,k) represents the covariance space with a given occupied orbital space. Let L (t,k) 
denote the dimension of v(t,k). 

v ~ v(t) ~ v(t,k) ~ v(t ,k,r). f(t ,k,r),  (4) 

where r is the sequential number ofirreps, and r = 1,..., mr is the number of irreps in 
a molecular system; v(t,k,r) is an irrep space. If f ( t , k , r ) = l ,  then there is an 
irreducible subspace belonging to the rth irrep in v(t,k). I f f ( t , k , r )=  0, then irrep r is 
not contained in v(t,k). Therefore,  f ( t ,k ,r)  (r = 1,..., mr) spans a vector of dimension 
mr (its value of elements is 0 or 1), and is called the character information of 
subspace v(t,k), which defines the point group symmetry of v(t,k) and reduction into 
irreps [-4]. 

The variance space v may be directly decomposed according to irreps: 

v ~ v(r) ~ v(r,t) (r = 1, . . . ,  mr, t = c, a or v), (5) 

re(r) = ~ m( t,r) = m(c,r) + m(a,r) + m(v,r), (6) 

m(t,r) = ~, f ( t ,k ,r) ,  (7) 
k 

nt = ~ m(t,r)" ra, (8) 
Y 

where v(r) expresses orbital variance space belonging to rth irrep, v(r,t) is the 
subspace divided according to core, active and virtual space ( t=c ,  a or v), re(r) is 
total of irreducible subspaces in rth irrep, these m(t,r) (t= c, a and v) are the 
numbers of irreducible subspaces belonging to rth irrep in core, active and virtual 
space, individually, rd is the dimension of rth irrep. There exist the one, two or three 
dimensional irreps usually. The SLMOs and CMOs can simply be transformed by 
a unitary operation to each other [-4]. 

4 Configuration correlation and LOs 

The configuration correlation and electron excitation must simultaneously satisfy 
both conditions: the symmetric condition and neighborhood condition. Let ~b be 
a configuration function, and c~( i~ j )  be an excited function which expresses 
electron exciting from orbital i into orbital j, then: (a) i andj  have the same or partly 
same symmetry in G; (b) if i and j  are strongly localized, they must be neighborhood 
orbitals. Otherwise (~b [Hlgp( i~j  )) ~0,  and the orbitals i and j  are non-correlative. 
We define that the neighborhood orbitals are these orbitals, localized in the same 
or partly same region. For example, let A, B, C, D express the different atoms, where 
A-B and B-C are neighborhood bonds, but A-B and C-D are non-neighborhood. 
Both spaces containing common irreps and neighborhood orbitals are called 
correlation space in reference to each other. The electron of a subspace can only be 
excited to its correlation spaces. The numbers of common irreps in two correlation 
spaces is defined as their degree of correlation. The number of non-degeneracy 
single excited functions between two spaces are equal to their degree of correlation. 
For example, suppose that there are three sets of C G O s  and three sets of virtual 
orbitals in C6H6 as mentioned above. The three sets of virtual orbitals may be 
expressed as a(C-C)*, o-(C-H)*, n(C)*, and they are covariant with corresponding 
o-(C-C), a(C-H), re(C), respectively. It is shown that these spaces are neighborhood 
spaces. Their degrees of correlation are shown in Table 1. The numbers of linearly 
independent and non-degeneracy single excited functions are listed in Table 2. If 
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Table 1. The degree of correlation of subspaces in C6H6 

a(C-C) a(C-H) n(C) 

G(C-C)* 4 3 0 
~r(C-H)* 3 4 0 
~(C)* 0 0 4 

T. Zhou and A. Liu 

Table 2. The linearly independent and non-degeneracy single excited wavefunctions in 
C6H6 

CMOs as CGOs 
1 Alg tr(C-C)~a(C-C)* 2 Alg tr(C-C)~r(C-H)* 
3 Axg ~r(C-H)~cr(C-C)* 4 Alg a(C-H)~a(C-H)* 
5 Blu tr(C-C)~a(C-C)* 6 B2~ cr(C-H)~cr(C-H)* 
7 A2u n(C)~zt(C)* 8 Big n(C)~zt(C)* 
9 Eiu cr(C-C)~tr(C-C)* 10 Elu cr(C-C)~tr(C-H)* 

11 Eiu G(C-H)~tr(C-C)* 12 El~ tr(C-H)~tr(CH)* 
13 E2g a(C-C)-,cr(C-C)* 14 E2g tr(C-C)-,a(~H)* 
15 EEg a(C-H)--+a(C-C)* 16 EEg a(C-H)~a(C-H)* 
17 Etg r c ( C ) ~ ( C ) *  18 Ezu lr(C)-~rc(C)* 

SLMOs as CGOs 
1 o-(C 1 C2) --r tr (C1-C2) * 2 o-(C 1-C2 ) --~ a (C2 C3) :g 
3 a(C1-C2)--,a(C3-C4)* 4 a(C1-C2)---'a(C4-C5)* 
5 o-(C 1-C2)--~ o-(C 1-H 1 ) * 6 o-(C 1 C2)-*ff(Ca-H3)* 
7 tr(Cx-Ca)~tr(Cs-Hs)* 8 o'(C1-HI )---~o'(C1 Ca)* 
9 a ( C i - H i  ) ---~ O" (C2-C3) * 10 cr(C1-H1 )~ff(C3~4)* 

11 ~r(Ci-Hi)~cr(Ci-H1)* 12 cr(C1-H1)~a(Cz-H2)* 
13 o-(C 1-H 1 )-~ o" (C3-H3) * 14 o'(Ci-Hi ) ---~ a (C4-H4) * 
15 n(C1)~n(Ci)* 16 n(C1)~n(C2)* 
17 n(Ci)~n(C3)* 18 n(C1)~n(C4)* 

the CGOs  are strongly localized, the electrons can only be excited between both 
neighborhood orbitals, and any subspace would have a few correlation subspaces. 
For  large molecular systems, the dimension of single excited (SX) space is propor-  
tional to the number of CGOs  by using strongly localized orbitals as CGOs.  
However, using the CMOs  as CGOs,  where the electron can be excited from 
a orbital to all of the other orbitals having the same symmetry, the dimension of SX 
space is proport ional  to the square of CGOs.  Therefore, LOs have a more obvious 
merit to be studied in the multiconfigurational correlations than CMOs. The 
correlation space and degree of correlation are useful concepts in MCSCF calcu- 
lations. 

5 The generation of O S L M O s  

Let the optimal many-electron wavefunction in MCSX space [7] obtained from the 
kth MCSCF iteration by ~b, D be the first-order density matrix from ~b. The 
O S L M O s  (containing core, active, and virtual orbitals) using the k + l th iteration 
can be generated from the principle of maximum population. 
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A. It is shown that D is an Hermitian matrix and belongs to the totally 
symmetric representation of G. Therefore, D can be transformed into a block- 
diagonal form according to the component of point group irreps. Because the 
reduction of SLMOs into CMOs is a definite unitary transformation (see Eq. 3 in 
[4]), the block-diagonalization of D is simple when using SLMOs as CGOs. To 
solve the eigenequation in every block (the blocks for different components of an 
irrep are identical; therefore, in each irrep only one eigenequation is solved) and 
arranging CMOs in order of eigenvalue, we can classify the core, active, and virtual 
orbitals. The orbitals having bigger eigenvalue are core orbitals, the orbitals having 
smaller eigenvalue ( g  0) are virtual orbitals. These orbitals, whose eigenvalues are 
between core and virtual orbitals, are active orbitals. Thus, the space of any irrep 
can be decomposed into three parts: the core subspace, the active subspace, and 
virtual subspace. Their orbitals are expressed as c(t,r,x,y) (t = c, a and v) where x is 
the sequence number of orbitals in rth irrep, and y denotes the component of irrep. 

B. To define projection operators 

Pab = 2 [ia) ( ib[ (the bonds between both atoms a and b), (9) 
ij 

p a = ~  [i,)(ia[ (the orbitals in atom a), (10) 
i 

pabc=~( l i a ) ( J b l+ l ib ) ( j~ l+ l i e ) ( j a ] )  (the three center bond), (11) 
ij 

i and j sum the orbitals in an atom. To define: 

Pab=~Pab, (9') 
a b  

Pa=~ 'pa ,  (10') 
a 

Pabe = ~ Pabe, (11') 
a b e  

where ab, a, abc sum the equivalent bonds, equivalent orbitals, and equivalent 
three-center bonds, respectively. From Eqs. (9'), (10') (11') it is shown that the 
projection operators Pab, Pa, Pabe belong to the totally symmetric irrep of G. They 
commute with the operation g of G. Each subspace v(t,k) is characterized by the 
corresponding projection operator P(t,k). If f ( t ,k ,r)= 1, then v(t,k) is correlative 
and overlapping with v(r,t). To define W (t,k,r) as the correlation matrix between 
v(t,k) and v(r,t), its matrix element becomes 

Wxx, = (c(t,r,x,y)] P(t,k)]c (t,r,x',y) >. (12) 

These elements do not relate to components y. Because the contribution of 
equivalent bonds to matrix elements are the same, it can be proved that 

Wxx, = (L (t,k)/rd) ~ (c (t,r,x,y) lp(t,k)[c (t,r,x',y) ). (13) 
y 

In solving the eigenequation, W is diagonalized. The orbital cl(t,r,k,y) called 
LCMO is generated, having a maximum eigenvalue in the eigenfunctions of W. 
Therefore, it has a maximum projection or maximum overlap with subspace v(t,k), 
or say, localized in v(t,k). For each operator P(t,k)(k= 1, . . . ,L(t ,k) , t=c,  a or v) 
where f(t,k,r) = 1, we solve the eigenequation W (t,k,r), and the LCMOs localized 
in different subspaces v(t,k) can be generated. Because the number of LCMOs 
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belonging to each component of irrep r is m(t,r), the total of LCMO in space v(r,t) 
( t=c,  a or v) is m(t,r)ra. These LCMOs having the same component y are 
nonorthogonal and linearly independent. 

C. In the general case, the orthogonality and maximum projection are exclus- 
ive, and both can not be satisfied simultaneously. The VB orbitals are consistent 
with the maximum projection. Let us define the overlap matrix S with the matrix 
element: 

Skx = @1 (t,r,k,y) l c(t,r,x,y) ). 14) 

In general, the matrix S cannot be diagonalized by a unitary transformation to 
c(t,r,x,y), but the norm of its off-diagonal elements can be substantially reduced. 
Since the second moment of S is invariant to such transformations, one can 
minimize the sum of squares of nondiagonal elements of S. Consequently, the sum 
of square of diagonal elements is maximized, i.e.: 

Sx~=maximum x=  1,-..,m(t,r). (15) 
X 

The process can be performed by many 2 x 2 Jacobi rotations [10]. We define final 
and best orbitals through these rotations as c2(t,r,x,y). The set of c2(t,r,x,y) 
(x = 1,...,  m(t,r)) is pressing on towards the cl (t,r,x,y) and is the optimal 'localized' 
and orthogonal CMOs. 

D. From Eq. (3) in [4], the optimal CMOs can be transformed into OSLMOs. 
Thus, the OSLMOs in k + lth iteration are generated. 

Discussion 

We propose a mathematical method obtaining the OSLMOs for the k + l t h  
iteration of MCSCF from the D matrix in the kth iteration. These LOs correspond- 
ing to VB orbitals are strongly localized and overlapping [11]. Simultaneously, 
they completely satisfy molecular geometric symmetry. Using these nonorthogonal 
bases, the configuration number of MCSCF and CI calculations become smaller, 
because the electron correlation and excitation must satisfy the symmetric condi- 
tion and neighborhood condition. However, the calculations of Hamiltonian 
matrix elements in N-electron systems are proportional to N!, and are more 
difficult when N > 10. 

OSLMOs have the same symmetry and maximum overlapping with the corres- 
ponding VB orbital. Therefore, we can only calculate the important configurations 
in the process of CI and MCSCF, using the neighborhood correlation principle. 
Simultaneously, the calculations of matrix elements are greatly simplified due to 
their orthogonality. Thus, the MCSCF calculations for large molecules can be 
realized by using OSLMOs as CGOs. 

In the FORS, multiconfigurational wavefunctions are invariant against non- 
singular linear transformations among CGOs of the closed core and among active 
CGOs. Therefore, using OSLMOs or a nonorthogonal basis as molecular orbitals, 
the optimal multiconfigurational wavefunctions obtained from the variation 
method are completely identical. The final calculation results (as the density matrix 
and the electron distributions in three-dimensional space) ought to be in accord- 
ance by using nonorthogonal bases or OSLMOs. Our method as mentioned above 
can obtain the optimal orthogonal molecular orbitals for arbitrarily molecular 
systems, but the hybrid theory can only define the best orthogonal equivalent 
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molecular orbitals of center atoms in a LnM molecule. Therefore, OSLMOs are of 
wide significance as the best hybrid orbitals. It is obvious that the scheme can also 
be applied to solve the best hybrid orbitals. 
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